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On the Domain of Hyperbolicity of the Cumulant
Equations
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In this article we consider the influence of non-equilibirum values of classical
variables on the eigenvalues of the advection part of the cumulant equations.
Real and finite eigenvalues are a neccessary condition for the cumulant equa-
tions to be hyperbolic which can be used to obtain estimates on admissible
deviations from equilibrium for a model of particular order still to be valid. We
find that this condition puts no constraints on velocity and shear stress values,
but specific energy must be positive, normal stress must be bounded by specific
energy and heat flux not be too large.

KEY WORDS: Boltzmann equation; moment method; cumulant method;
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Characterizing fluid flow by the ratio of mean free path and a character-
istic flow length (the Knudsen number Kn) we have two extremes: dense
gases (Kn � 1) where modeling by Euler or Navier–Stokes equations is
valid and rarefied gases (Kn � 1) for which modeling by the Boltzmann
equation is neccessary. Developing models for the intermediate transition
regime is subject to active current resarch. With the emerging technology
of micro-scale machinery efficient methods for simulating transition regime
flows become essential as dense gase models become invalid and solution
of the Boltzmann equation is too expensive. The fist part of this paper
gives an overview on modeling flow of a non-reacting mixture of gases
by kinetic theory and how to derive approximate, mesoscopic model equa-
tions, the moment equations. The second part gives a short overview of
the cumulant method, an alternative method of approximation that results
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in particularly simple equations. For these equations we consider con-
straints imposed on the admissible values of classical variables (e.g. veloc-
ity, specific energy, shear and normal stress and heat flux) by demanding
hyperbolicity of the resulting equations.

1. KINETIC THEORY

We assume the fluid is composed of Ns different species, enumerated
by the set Ns with each species having its own set of associated properties.
For a species s, these are the particle mass ms and the laws of interac-
tion with particles of any other species r. We let the phase space density
fs(t, x, c) denote the density of particles of species s at time t and posi-
tion x, moving with absolute velocity c, normalized such that

ns(t, x)=
∫

dc fs(t, x, c) (1)

are the partial particle number densities of the various species (integrals
are taken over the whole velocity space Rd ).

The fs have to satisfy the Boltzmann equation, which – by consider-
ing a sufficiently dilute gas (in an inertial frame) where accounting only
for the effect of binary collisions is sufficient – takes the form(1)

∂t fs + c · ∂x fs +as · ∂c fs =
∑
r∈Ns

Srs [fr, fs ], s ∈Ns , (2)

where as is the acceleration of a s-particle due to external forces as a func-
tion of time t , particle position x and particle velocity c. We regard forces
exerted on particles due to particle–particle interaction as internal and any
other (e.g. gravity) as external. The collision operator Srs [fr, fs ] describes
the change of fs due to interaction of r- and s-particles.

Describing the evolution of mixtures of gases on a macroscopic scale
we are interested in partial quantities, such as the partial pressure, density,
etc. of each species. Given a phase space density fs(t, x, c), the density of
a partial macroscopic thermodynamic quantity (�)s(t, x) can be obtained
as the mean of an associated microscopic function �(t, x, c)

(�)s(t, x)=
∫

dc �(t, x, c) fs(t, x, c). (3)
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Multiplying (2) with � and integrating over c we obtain(2) a balance
equation for the quantity � (also known as Enskog’s general equation of
change)

∂t (�)s + ∂x · (c �
)
s
=
(
∂t � + ∂x · c� + ∂c ·as�

)
s
+
∑
r∈Ns

∫
dc � Srs ,

(4)

where we made use of partial integration and the property fs → 0 for
‖c‖→∞ due to (1). Setting � = 1

(2 π)d/2 e
i χ ·c we find the associated (�)s

to be the characteristic function(3) ϕs with the equation of motion

∂t ϕs + ∂x · ∂ i χ
ϕs = �s +

∑
r∈Ns

�rs [ϕr, ϕs ] ,

collision term �rs [ϕr, ϕs ] = 1
(2π)d/2

∫
dc Srs e

i χ ·c

and force term �s [ϕs ] = 1
(2 π)d/2

∫
dc fs ∂c ·as e

i χ ·c
.

(5)

Analytic expressions for �rs can be obtained for the Maxwell gas by
following the idea of Bobylev,(4) as well as for the BGK approximation.
After a straightforward calculation we find for the Maxwell gas

�mxw
rs [ϕr, ϕs ]=

√
2 κrs

µrs
(2π)2

∫
dε

(
ϕr(χ ·D+

+) ϕs(χ ·D−
+)−ϕr(0) ϕs(χ )

)
(6)

with interaction strength parameters κrs(where κrs = κsr ), reduced mass
µrs = mr ms

mr+ms
, mass difference parameter 
rs = mr−ms

mr+ms
and

D+
+ =

[
1+
rs

2 1− 1+
rs

2 S−1
]
, D−

+ =
[

1−
rs

2 1+ 1+
rs

2 S−1
]
, (7)

where S is such that it maps the relative pre-collision velocity to the rel-
ative post collision velocity ĉrs = S · crs . From the actual kinematics of a
collision we find in 2D

ϑ2D(ε)=π

(
1− ε√

1+ ε2

)
and S(ε)=

(
cosϑ(ε) − sin ϑ(ε)

sin ϑ(ε) cosϑ(ε)

)
.

(8)
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For the BGK approximation a Fourier transform of the well-known
BGK collision operator(5,6) gives

�BGK
rs =− nr

σrs

(
ϕs − ns

(2 π)d/2
exp

(
i χ ·vr − 1

2 εs ‖χ ‖2
))

. (9)

By repeated differentiation of (5) with regard to χ and setting χ =0 after-
wards we find an infinite system of coupled, nonlinear balance equations

∂t M
0
s + ∂x ·M1

s =G0
s + ∑

r P 0
rs

∂t M
1
s + ∂x ·M2

s =G1
s + ∑

r P 1
rs

...

∂t M
α
s + ∂x ·Mα+1

s =Gα
s + ∑

r P α
rs

...

with

Mα
s = (2π)d/2 ∂α

i χ
ϕs

∣∣∣
χ=0

Gα
s = (2π)d/2 ∂α

i χ
�s

∣∣∣
χ=0

P α
rs = (2π)d/2 ∂α

i χ
�rs

∣∣∣
χ=0

(10)

for the so-called moments Mα
s = (

cα
)
s
. For powers of c or ∂ i χ

a scalar
exponent α denotes the tensorial power of order α, while a multi-index
will denote the appropriate element of such a tensor. Similarly, for the
moments Mα

s , force terms Gα
s and productions P α

rs , a scalar superscript
α denotes the full tensor (of rank α) and a multi-index the correspond-
ing element. The advection term for equation α couples moments of order
α and α + 1, as the flux in one equation appears as density in the equa-
tion of next higher order and vice versa. In general we must assume that
production terms may couple between any orders α, but for the partic-
ular interaction models to be considered here we observe only coupling
towards lower orders. Currently it appears to be not even known whether
the quantities appearing in Eq. (10) are well-defined functions for every
solution of (2). E.g. boundedness of the appearing integrals or proper
differentiability of the moments are by no means obvious for non-equilib-
rium solutions. Anyhow, moments have been shown to be well-defined at
least for the spatially homogeneous(7) and the nearly homogeneous(8) case,
so it might be more generally true.

One promising approach to modelling mesoscopic fluid flow is to con-
sider finite subsets of (10) as approximations of (2) by taking only equa-
tions of order α = 0, . . . ,Nα,where the ‘level of detail’ can be adjusted
by Nα. Truncation of (10) at some order Nα imposes the so-called clo-
sure problem, which consists in expressing the moments Mα

s , the force
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terms Gα
s and the productions P α

s as a function of some set of vari-
ables (traditionally the moments themselves) so that the finite subsystem
is closed.This is achieved by making an ansatz – or imposing physical
principles to determine a suitable ansatz – for the phase space density
fs or the characteristic function ϕs with some ansatz parameters. Given
the functional form of the ansatz, a relation of the parameters and the
moments is determined by the condition that the first Nα moments of the
ansatz should equal those of the ‘true’ (but unknown) solution. Solving
this relation for the parameters as a function of the moments allows to
express the ansatz for fs in terms of the moments and in turn to deter-
mine M

Nα+1
s ,Gα

s and P α
s as a function of the moments so that (10) is

closed.
There are various criteria proposed in the literature on how to achieve

this closure. In the method proposed by Grad,(9) fs is factored into an
equilibrium and a non-equilibrium part, the latter being expanded in a
series of Hermite polynomials ortho-normalized with regard to the (t, x)-
local equilibrium part. Later Waldmann(10) observed that for states close
to thermal equilibrium – where a linear approximation of the collision
operator holds – expressing fs as a sum of a (local) equilibrium and a
small deviation-from-equilibrium part leads to a linear integro-differential
equation for the deviation from equilibrium. Assuming a space-homoge-
neous gas with a solution where the deviation from equilibrium decays
exponentially in time leads to an eigenvalue problem for the function
describing the deviation from equilibrium. An analytical solution can be
given for the special case of a Maxwell gas where an orthonormal system
of eigenfunctions can be constructed as a product of Sonine polynomi-
als and spherical harmonics when using spherical coordinates in velocity
space. These correspond to irreducible homogeneous tensors when using
cartesian coordinates in velocity space, which is why Waldmann considers
an expansion of the deviation from equilibrium with regard to these eig-
entensors of the linearized collision operator.

Both the methods proposed by Grad and Waldmann allow to deter-
mine the closure exactly but it appears to be difficult to give useful expres-
sions for the entropy density, its flux or production rate. This is the main
emphasis in the framework of Extended Irreversible Thermodynamics (EIT)
by Müller and Ruggeri.(11) There, a particular ansatz form is obtained by
applying a local formulation of the second law of thermodynamics. The
resulting functional form is the same as proposed by Levermore(12) except
that he adds more restrictive constraints on the admissible parameter values.
Unfortunately, closure appears to be a very hard problem, as the resulting
ansatz function is an exponential of a tensor polynomial in c. Nevertheless
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entropy density and flux can be given but it appears to be difficult to give
an analytic form of the entropy production, which is at the center of the
modified moment method(13) proposed by Eu. There the ansatz for fs is
chosen such that the entropy production takes a simple form, making the
connection of evolution of non-conserved variables and entropy production
quite obvious. But again: neither is there a method for exact closure nor is
it simple to give an analytic form of the entropy density. Recently Müller
et al.(14) have proposed a “consistent order of magnitude closure” which
employs the expansion proposed by Waldmann but assigns orders of mag-
nitude to the various terms in the resulting equations by the technique of a
Maxwell expansion.(15) When considering only terms up to a chosen order,
they observe that the resulting equations are closed, without any further
assumptions to be made.

2. THE CUMULANT METHOD

Except for the simplest closure by assuming local equilibrium phase
space densities, none of the methods proposed to obtain ‘more detailed’
approximations of (2) by truncated moment systems (10) allows us to
obtain exact equations of motion and analytic results for entropy den-
sity and entropy production. Further, except for the original method by
Grad, we need to make the assumption of the gas being in a state close
to equilibrium even for obtaining the equations of motion. In contrast,
the cumulant method allows to derive the exact, fully non-linear equa-
tions of motion for the ansatz parameters. However, neither can we give
analytic expressions for the entropy density and production for the cumu-
lant method,(16–18) but its theory gives some insight in how such closures
can possibly be constructed. Compared to other methods, derivation of
the resulting equations of motion up to high approximation orders to be
simple. Also the resulting equations are of particularly simple, quasi-lin-
ear structure compared to the often highly equations obtained by other
methods.

The relation of the cumulant method to the method proposed by
Grad has been touched briefly in an earlier paper.(16) We find that –
at least for the one-dimensional case considered there – the low-order
cumulants coincide with Grad’s expansion coefficients. For higher trunca-
tion orders Nα, however, the moment equations obtained from the cumu-
lant ansatz yield extra terms which we suspect to be responsible for the
simple quasi-linear structure of the advection form of the equations of
motion. Also, the eigenvariables for the linearized production terms of
the Maxwell gas and their relaxation times have been determined.(17)

The relation of these eigenvariables to the eigenfunctions determined by
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Waldmann is clearly beyond the scope of this paper, which is concerned
with the advection part of the cumulant equations only. This advection
part is purely determined by the exactly defined relation between cumu-
lants and moments but has quite some implications on the well-posedness
of the equations. For the sake of simplicity we will restrict to the 2D case,
but there is no difficulty in extending the method to the 3D case.

Remembering the derivation of (10) it becomes obvious that we actu-
ally make a Taylor-expansion of � = 1

(2 π)d/2 e
i χ ·c about χ = 0 so that we

have

ϕs = 1
(2π)d/2

( ∞∑
α=0

i α

α!
χα · cα

)

s

=
∞∑

α=0

i α

(2π)d/2 α!
χα · (cα

)
s
, (11)

with the moments Mα
s = (

cα
)
s

being the series coefficients and (10) are
the corresponding contributions of order α for a ‘Taylor expansion’ of
(5). Thus we can understand the closure problem discussed above as the
problem of expressing all moments M

γ
s with γ >Nα as a function of the

(given) moments Mα
s with α�Nα. That is, series (11) is not truncated,

but moments of order higher than Nα have to be fully determined by the
moments of lower order.

The main idea for the cumulant method is based on the argument
that – being interested in ‘macroscopic’ quantitites – we are also interested
in changes on macroscopic (slow) time scales.(17) This allows to assume
that fast relaxation processes have (almost) reached their equilibrium state
and that their dynamics can be neglected if we are only interested in the
slower processes. If we choose cumulants as macroscopic parameters for
the description this means that we may assume equilibrium values (which
are conveniently zero) for the high-order cumulants. Thus our ansatz is
a polynomial approximation of the second characteristic function κs =
ln
(
(2π)d/2 ϕs

)
so that we have

ϕCM
s = 1

(2π)d/2
exp

(
Nα∑
α=0

i α

α!
χα ·Cα

s

)
(12)

with the cumulants Cα
s being the coefficients of the Taylor-expansion of

κs just like the moments Cα
s are the coefficients of an expansion of ϕs ,

both taken about χ = 0. Nα denotes the arbitrary truncation number of
the expansion. A closed set of equations of motion – or alternatively the
relations between moments Mα

s , productions P α
s and force terms Gα

s and
the cumulants Cα

s – can be directly obtained by (10). The relation of the
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moments and the cumulants has been discussed in earlier works(16,17,19)

and can be obtained conveniently using computer algebra systems.(18) We
obtain the following relations between the first order moments and cumu-
lants:

M0 = eC0
,

Mx = eC0
Cx,

My = eC0
Cy,

Mxx = eC0 (
Cx Cx +Cxx

)
,

Mxy = eC0 (
Cx Cy +Cxy

)
,

Myy = eC0 (
Cy Cy +Cyy

)
,

Mxxx = eC0 (
Cx Cx Cx +3Cx Cxx +Cxxx

)
,

Mxxy = eC0 (
Cx Cx Cy +2 Cx Cxy +Cy Cxx +Cxxy

)=Mxyx =Myxx,

Mxyy = eC0 (
Cx Cy Cy +Cx Cyy +2 Cy Cxy +Cxyy

)=Myxy =Myyx,

Myyy = eC0 (
Cy Cy Cy +3Cy Cyy +Cyyy

)
.

(13)

Equations (10) obtained this way are equations in balance form. It
is clear from their definition that the moments and cumulants of order
α have only

(
α+d
d−1

)
linearly independent components, because the prod-

uct between velocity components is commutative. Denoting the tensors of
the reduced, linear independent variables with a tilde, writing (10) in its
reduced from and making use of the chain rule we may derive equations
with the cumulants as basic fields. This is because the relation between
the reduced moments and cumulants is bijective and therefore the Jacobi-
matrix

(
∂
C̃s

M̃s

)
is not singular for the reduced variables and its inverse

is defined. This result is a set of equations in convection (or quasi-linear)
form, stated for a set of primitive variables

∂t C̃s +As · ∂x C̃s = Ẽs +
∑
r∈Ns

B̃rs

with convection tensor As =
(
∂
C̃s

M̃s

)−1 ·
(
∂
C̃s

F̃ s

)
,

production terms B̃rs =
(
∂
C̃s

M̃s

)−1 · P̃rs

and force term Ẽs =
(
∂
C̃s

M̃s

)−1 · G̃s ,

(14)

which takes a particularly simple form, namely Ẽs = (0 as 0 0 . . .
)T.

The convection tensor As is sparsely populated and has a particularly sim-
ple structure, as can be seen from the x-component of As . For the 2D case
(d =2) we have
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[
As

]
x
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Cx
s 1 0 0 0 0 0 0 0 0

Cxx
s Cx

s 0 1 0 0 0 0 0 0
C

xy
s 0 Cx

s 0 1 0 0 0 0 0

Cxxx
s 2Cxx

s 0 Cx
s 0 0 1 0 0 0

C
xxy
s C

xy
s Cxx

s 0 Cx
s 0 0 1 0 0

C
xyy
s 0 2C

xy
s 0 0 Cx

s 0 0 1 0

Cxxxx
s 3Cxxx

s 0 3Cxx
s 0 0 Cx

s 0 0 0
. . .

C
xxxy
s 2C

xxy
s Cxxx

s C
xy
s 2Cxx

s 0 0 Cx
s 0 0

C
xxyy
s C

xyy
s 2C

xxy
s 0 2C

xy
s Cxx

s 0 0 Cx
s 0

C
xyyy
s 0 3C

xyy
s 0 0 3C

xy
s 0 0 0 Cx

s

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

Remember that multi-index superscripts refer to the actual cumulant
tensor components. In contrast to some other moment closures, the equa-
tions for some approximation order Nα appear to be fully contained in the
set of equations of next higher order. E.g. for closures that result in a phase
space density of the form ep(c), dependance of the coefficients of the poly-
nomial on the moments changes with the order of truncation.(11) Further,
the full nonlinear equations can be obtained, without the need to assume
states close to equilibrium. If one makes this assumption, however, the pro-
duction terms may be linearized and a system of eigenvariables and their
relaxation times can be determined (see ref. 17 and below). We expect a
one-to-one correspondence of this eigensystem to the eigenfunctions pro-
posed by Waldmann. Thus it should be possible to construct a “consistent
order of magnitude” closure similar to ref. 14 by rewriting (14) in terms of
the eigenvariables and starting a Maxwell iteration, the first step of which
already clarifies the relation of (14) to the Navier–Stokes equations.(17) By
taking the limit Nα → ∞ Eq. (14) may be considered an infinite system
just as (10). For a truncation of finite order Nα, however, the bottom left
block in (15) vanishes. Figure 1 shows the spectrum of As(C̃) as a func-
tion of the approximation order Nα. This spectrum has been obtained by
inserting the equilibrium values(16) for the cumulants in (15) and deter-
mining the eigenvalues of the resulting matrix numerically using Math-
ematica.(20) As for EIT,(11) the eigenvalue spectrum for a given order Nα

contains all eigenvalue spectra for approximations of lower order. Further
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Fig. 1. Eigenspectrum of As(C̃ )in equilibrium as it depends on the approximation order

Nα . For each order, only the newly appearing spectral values are plotted. We observe a finite
maximum magnitude, growing monotonically with Nα .

we observe finite but monotonically growing maximum and minimum
eigenvalues. These advection tensor eigenvalues can be related to the (finite)
speeds of propagation of weak discontinuities and should be real (so that
(14) is hyperbolic). Consistent with EIT, growth of the maximal magnitude
of the eigenvalues slows down with increasing truncation order. These eigen-
values corresponding to the highest characteristic speeds evaluated in equi-
librium play an important role in modeling shock structures, as for shock
speeds beyond that value unphysical sub-shocks appear in the solutions of
the approximate equations.(21,22) This finding implies that many moments
or cumulants have to be considered for fast shocks and might be considered
a drawback of the cumulant method and moment methods in general.

The production terms B̃α
rs(C̃r , C̃s), calculated from (6) or (9) by (10)

and (14), are in general highly nonlinear functions of the cumulants C̃α
r

and C̃α
s . However, for states close to equilibrium we may linearize the pro-

duction terms. First we rewrite the productions in terms of the cumu-
lants as B̃rs = B̃rs(C̃s + C̃rs, C̃s) with the ‘relative cumulants’ Cα

rs = Cα
r −

Cα
s and C0

rs = 0. With a Taylor-expansion up to first order about the
equilibrium values C̃eq we have B̃ lin

rs = B̃s ·
C̃s + B̃rs ·
C̃rs with B̃s =(
∂
C̃s

B̃rs

)eq
, B̃rs = (

∂
C̃rs

B̃rs

)eq and 
C̃ = C̃ − C̃eq. Both B̃s and B̃rs are

block-diagonal for the Maxwell model. This allows not only to give an
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analytic solution for a pure, space homogeneous gas by calculating the ei-
gensystem of B̃s ,(18) but also to establish the relation to the classical ther-

modynamic variables density n, specific energy ε, velocity v , shear stress
σ� and normal stress σ◦as well as heat flux j as

n = eC0
, ε = 1

2 (Cxx +Cyy),

v =
(
Cx

Cy

)
, j = 1

2

(
Cxxx +Cxyy

Cyyy +Cxxy

)
,

σ = 1
2

(
Cxx −Cyy 2 Cxy

2 Cxy Cyy −Cxx

)
=
(

σ◦ σ�
σ� −σ◦

)
.

(16)

Although other models have not yet been investigated, we would rea-
sonably expect these relations to hold for other interaction models, as the
particular type interaction has more an influence on the transport coeffi-
cients (eigenvalues) than on the qualitative behaviour of the low order
terms in (11), which are directly related to the low order cumulants (see
(13)).

Solving (16) for the (low-order) cumulants, and inserting these into
(15), we can give the dependence of the convection tensor on the classical
variables (16). As for Fig. 1 we have determined the eigenvalue spec-
trum by calculating the convection tensor for a given order Nα and deter-
mined the eigenvalue spectrum using Mathematica. Figures 2–5 show the

-3 -2 -1 0 1 2

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2

-3

-2

-1

0

1

2

3

Re( eigenvalues of Ax )

-3 -2 -1 0 1 2

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2

-3

-2

-1

0

1

2

3

Im( eigenvalues of Ax )Να = 3

υx υx

Fig. 2. Eigenspectrum of the x-component of As as a function of the vx component of

velocity. We observe that a non-zero value of vx just shifts the whole spectrum. This is due
to the (expected) Galilei invariance of (14).
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Fig. 3. Eigenvalues of [As ]x and [As ]y vs. specific energy ε. The specific energy must be

positive for the spectrum to be real and not degenerate. This matches the well-known ther-
modynamic constraint of positive temperature.

dependence of the eigenvalue spectrum of (15) on the classical variables
(16). For all cumulants and eigenvalues except the one varied equlibrium
values have been assumed. We find that demanding real eigenvalues for
all components of As impose different possible constraints on the domain
of allowed eigenvariable values. The first case is that no constraints are
imposed, as is the case for vx and vy . In Fig. 2 we see that an arbi-
trary velocity just produces a shift of the eigenvalue spectrum of As , as we
would expect from a set of equations with Galileian invariance. The same
situation is observed for σ�, which does not influence the spectrum at all.
That (14) obeys Galilean invariance can also easily seen from the particu-
lar form of (15): for [As ]x and every order α, the main diagonal part hold
just Cx which is actually the mean velocity vx . So a given mean velocity vx

just shifts the spectrum of [As ]x . The second case is observed for ε, shown
in Fig. 3, where the spectra for both the x and y component impose a
lower bound on ε, independent of Nα. The third case is seen in Figs. 4
and 5 which impose boundedness of σ◦, jx and jy but for two different
reasons: for σ◦, the x and y component of As impose either an upper or
a lower bound which are the same for any Nα. For j , however, one As

component imposes both upper and lower bounds and the other compo-
nent of As does not impose any bounds. For dependence of the eigenvalue
spectrum of As on the heat flux we observe the paradoxical situation that
the intervall of allowed jx-values for (14) to be hyperbolic becomes smaller
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Fig. 4. Eigenspectrum of both the x- and y-component of As as a function of the normal

stress σ◦. We have assumed ε = 1 and equilibrium values (= 0) for any other eigenvariable
(except σ◦ of course). Additional variation of ε shows that in fact the x-component spectrum
imposes a lower bound −ε, while the y-component spectrum imposes an upper bound +ε,
so admissible heat flux values are σ◦ ∈ (−ε,+ε). There is no dependence of the spectra on the
shear stress σ�.

with increasing Nα. Whether the allowed intervall remains finite or con-
verges to the empty set for Nα →∞ remains an open question. We note
that this might not be the case in real flow situations, where other cumu-
lants may have non-equilibrium values, thereby possibly compensating this
effect.



88 Seeger and Hoffmann

-3 -2 -1 0 1 2

-3

-2

-1

0

1

2

3

Re( eigenvalues of Ax )

-3 -2 -1 0 1 2

-3

-2

-1

0

1

2

3

Im( eigenvalues of Ax )

-3 -2 -1 0 1 2

-3

-2

-1

0

1

2

3

Re( eigenvalues of Ax )

-3 -2 -1 0 1 2

-3

-2

-1

0

1

2

3

Im( eigenvalues of Ax )

Να = 3

Να = 5

jxjx

jxjx

Fig. 5. Eigenspectrum of [As ]x as function of heat flux jx for two different approximation

orders Nα As in Fig. 4, we assume equilibirum values for all other eigenvariables. We observe
that |jx | must be smaller than some bound jmax, but paradoxically jmax becomes smaller
with increasing Nα . It remains unclear whether jmax converges to zero or a finite value for
Nα → ∞ or if this effect disappears in a ‘true’ non-equilibrium situation where other high
order variables may have non-zero values.

3. SUMMARY

In this paper we have first given an overview how mesoscopic mod-
els can be derived from kinetic theory. The cumulant method is one par-
ticular method of deriving a true hierarchy of such mesoscopic model
equations where linear combinations of the low order cumulants can be
related to classical variables. Hyperbolicity of the resulting equations is a
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desirable feature, as it ensures finite propagation speeds for weak discon-
tinuities. Non-negativity of the advection tensor components of the result-
ing equations is a neccessary condition for hyperbolicity and can be used
to find estimates for bounds on admissible values for the classical variables
and thus on the domain of hyperbolicity for the cumulants. We find three
kinds of constraints put on the values of the classical variables: none at all
(velocity, shear stress), a lower, zero bound (specific energy) or both lower
and upper bound heat flux, normal stress).
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